
DOMjudge Administrator’s Manual

by the DOMjudge team Sun, 8 Dec 2013 14:19:48 +0000

This document provides information about DOMjudge installation, configuration and operation for the DOMjudge

administrator. A separate manual is available for teams and for jury members. Document version: c89a70d

Contents

1 DOMjudge overview 5

1.1 Features . 5

1.2 Requirements . 5

1.3 Copyright and licencing . 6

1.4 Contact . 7

2 Contest planning 8

2.1 Contest hardware . 8

2.2 Requirements . 8

3 Installation and configuration 11

3.1 Quick installation . 11

3.2 Prerequisites . 12

3.3 Installation system . 13

3.4 Configuration . 14

3.5 Configuration of languages . 14

3.6 Configuration of special run and compare programs . 15

3.7 Alerting system . 17

3.8 Other configurable scripts . 17

3.9 Submission methods . 17

3.10 Database installation . 17

3.11 Web server configuration . 19

3.12 Logging & debugging . 19

3.13 Installation of a judgehost . 20

3.14 Building and installing the submit client . 20

3.15 (Re)generating documentation and the team manual . 21

3.16 Optional features . 22

3.17 Upgrading . 24

2

CONTENTS 3

4 Setting up a contest 25

4.1 Configure the contest data . 25

4.2 Contest milestones . 28

4.3 Team authentication . 28

4.4 Providing testdata . 30

4.5 Start the daemons . 30

4.6 Check that everything works . 30

4.7 Testing jury solutions . 31

5 Team Workstations 32

6 Web interface 33

6.1 Jury and Administrator view . 33

6.2 The scoreboard . 33

6.3 Balloons . 35

7 Security 36

7.1 Considerations . 36

7.2 Internal security . 36

7.3 Root privileges . 37

7.4 File system privileges . 37

7.5 External security . 38

A Common problems and their solutions 39

A.1 Java compilers and the chroot . 39

A.2 The Java virtual machine (jvm) and memory limits . 39

A.3 Java class naming . 40

A.4 GCJ compiler warnings . 40

A.5 Error: ‘submit_copy.sh failed with exitcode XX’ . 41

A.6 C#/mono support . 41

A.7 Memory limit errors in the web interface . 41

A.8 Compiler errors: ‘runguard: root privileges not dropped’ . 41

B Multi-site contests 42

C DOMjudge and the ICPC validator interface standard 43

D Submitdaemon and the Dolstra protocol 44

D.1 Dolstra protocol requirements . 45

CONTENTS 4

E Developer information 46

E.1 Maintainer mode installation . 46

E.2 Bootstrapping from Git repository sources . 46

E.3 Makefile structure . 46

1 DOMjudge overview

DOMjudge is a system for running programming contests like the ACM regional and world championship

programming contests.

This means that teams are on-site and have a fixed time period (mostly 5 hours) and one computer to solve a

number of problems (mostly 6-10). Problems are solved by writing a program in one of the allowed languages,

that reads input according to the problem input specification and writes the correct, corresponding output.

The judging is done by submitting the source code of the solution to the jury. There the jury system compiles

and runs the program and compares the program output with the expected output.

This software can be used to handle the submission and judging during such contests. It also handles

feedback to the teams and communication on problems (clarification requests). It has web interfaces for the

jury, the teams (their submissions and clarification requests) and the public (scoreboard).

1.1 Features

A global overview of the features that DOMjudge provides:

• Automatic judging with distributed (scalable) judge hosts

• Web interface for portability and simplicity

• Modular system for plugging in languages/compilers and more

• Detailed jury information (submissions, judgings) and options (rejudge, clarifications)

• Designed with security in mind

• Has been used in many live contests

• Open Source, Free Software

1.2 Requirements

This is a (rough) list of the requirements for DOMjudge.

• At least one machine running Linux, with (sudo) root access

• Apache web server with PHP 5.2 or newer and PHP-command line interface

• MySQL database server version 4.1.0 or newer

• Compilers for the languages you want to support

A 2.2 (detailed list of requirements) is contained in the 3 (Installation and Configuration) chapter.

5

CHAPTER 1. DOMJUDGE OVERVIEW 6

1.3 Copyright and licencing

DOMjudge is developed by Jaap Eldering, Thijs Kinkhorst, Peter van de Werken and Tobias Werth. Devel-

opment is hosted at Study Association A-Eskwadraat , Utrecht University , The Netherlands.

It is Copyright (c) 2004 - 2013 by The DOMjudge Developers.

DOMjudge, including its documentation, is free software; you can redistribute it and/or modify it under the

terms of the GNU General Public License http://www.gnu.org/copyleft/gpl.html as published by the

Free Software Foundation; either version 2, or (at your option) any later version. See the file COPYING.

This software is partly based on code by other people. These acknowledgements are made in the respective

files, but we would like to name them here too:

• dash (i386) is included, built from the Debian dash sources (copyright various people, see

doc/dash.copyright).

• mkstemps.h and basename.h are modified versions from the GNU libiberty library (copyright Free

Software Foundation).

• lib.database.php by Jeroen van Wolffelaar et al.

• submit.cc and submitdaemon.cc are based on submit.pl and submitdaemon.pl by Eelco Dolstra.

• runguard.c was originally based on timeout from The Coroner’s Toolkit by Wietse Venema.

• sorttable.js by Stuart Langridge.

• jscolor.js by Jan Odvarko.

• tabber.js by Patrick Fitzgerald.

• GeSHi syntax highlighter library by Benny Baumann, Nigel McNie.

• The DOMjudge logo is based on the NKP 2004 logo made by Erik van Sebille.

• Several icons have been taken from the phpMyAdmin project.

• Several M4 autoconf macros from the Autoconf archive by various people are included under m4/.

1.3.1 Non-GPL licenced parts of DOMjudge

A binary version of the dash shell (statically compiled) is distributed with DOMjudge. This program is

copyright by various people under the BSD licence and a part under the GNU GPL version 2, see COPYING.BSD

and doc/dash.copyright for more details. Sources can be downloaded from:

http://www.domjudge.org/sources/ .

The sorttable.js script is copyright by Stuart Langridge and licenced under the MIT licence, see

COPYING.MIT. This software was downloaded from

http://www.kryogenix.org/code/browser/sorttable/ . The jscolor.js script is copyright by Jan

Odvarko and licenced under the GNU LGPL. It was obtained at http://jscolor.com . The tabber.js

script is copyright by Patrick Fitzgerald and licenced under the MIT licence, see COPYING.MIT. It was down-

loaded from http://www.barelyfitz.com/projects/tabber/ .

The M4 autoconf macros are licenced under all-permissive and GPL3+ licences; see the respective files for

details.

http://www.gnu.org/copyleft/gpl.html
http://www.domjudge.org/sources/
http://www.kryogenix.org/code/browser/sorttable/
http://jscolor.com
http://www.barelyfitz.com/projects/tabber/

CHAPTER 1. DOMJUDGE OVERVIEW 7

DOMjudge includes specifications of a number of interfaces. These specifications are dedicated to the public

domain, as specified in the Creative Commons Public Domain Dedication (CC0 1.0) . These specifications

can be found as appendices in the judge manual and as separate ASCII text files in the documentation

directory:

• The checktestdata language grammar.

• The DOMjudge problem format zip-bundle.

1.3.2 About the name and logo

The name of this judging system is inspired by a very important and well known landmark in the city of

Utrecht: the dome tower, called the ‘Dom’ in Dutch. The logo of the 2004 Dutch Programming Champi-

onships (for which this system was originally developed) depicts a representation of the Dom in zeros and

ones. We based the name and logo of DOMjudge on that.

We would like to thank Erik van Sebille, the original creator of the logo. The logo is under a GPL licence,

but Erik suggested a "free as in beer" licence first: you’re allowed to use it, but you owe Erik a free beer in

case might you encounter him.

1.4 Contact

The DOMjudge homepage can be found at: http://www.domjudge.org/

We have a low volume mailing list for announcements of new releases.

The authors can be reached through the development mailing list: domjudge-devel@lists.a-eskwadraat.nl .

You need to be subscribed before you can post. See the list information page for subscription and more

details.

Some developers and users of DOMjudge linger on the IRC channel dedicated to DOMjudge on the Freenode

network: server irc.freenode.net, channel #domjudge. Feel free to drop by with your questions and

comments.

2 Contest planning

2.1 Contest hardware

DOMjudge discerns the following kinds of hosts:

Team computer

Workstation for a team, where they develop their solutions and from which they submit them to the

jury system. The only part of DOMjudge that runs here is the optional command line submit client;

all other interaction by teams is done with a browser via the web interface.

DOMjudge server

A host that receives the submissions, runs the database and serves the web pages. This host will run

Apache, and MySQL. Also called domserver for brevity.

Judgehosts

A number of hosts, at least one, that will retrieve submitted solutions from the DOMjudge server,

compile and run them and send the results back to the server. They will run the judgedaemon from

DOMjudge.

Jury / admin workstations

The jury members (persons) that want to monitor the contest need just any workstation with a web

browser to access the web interface. No DOMjudge software runs on these machines.

One (virtual) machine is required to run the DOMserver. The minimum amount of judgehosts is also one,

but preferably more: depending on configured timeouts, judging one solution can tie up a judgehost for

several minutes, and if there’s a problem with one judgehost it can be resolved while judging continues on

the others.

As a rule of thumb, we recommend one judgehost per 10-20 teams.

However, overprovisioning does not hurt: DOMjudge scales easily in the number of judegehosts, so if hardware

is available, by all means use it. But running a contest with fewer machines will equally work well, only the

waiting time for teams to receive an answer may increase.

Each judgehost should be a dedicated (virtual) machine that performs no other tasks. For example, although

running a judgehost on the same machine as the domserver is possible, it’s not recommended except for testing

purposes. Judgehosts should also not double as local workstations for jury members. Having all judgehosts

be of uniform hardware configuration helps in creating a fair, reproducible setup; in the ideal case they are

run on the same type of machines that the teams use.

DOMjudge supports running multiple judgedaemons in parallel on a single judgehost machine. This might

be useful on multi-core machines. Note that although each judgedaemon process can be bound to one single

CPU core (using Linux cgroups), shared use of other resources such as disk I/O might still have a minor

effect on run times. For more details on using this, see the section 3.16 (Installation: optional features).

2.2 Requirements

2.2.1 System requirements

The requirements for the deployment of DOMjudge are:

8

CHAPTER 2. CONTEST PLANNING 9

• Computers for the domserver and judgehosts must run Linux or a Unix variant. This software has

been developed mostly under Debian GNU/Linux, and the manual adds some specific hints for that,

which also apply to Debian derivative distributions like Ubuntu. DOMjudge has been tested a bit

under other Linux distributions and FreeBSD. We try to adhere to POSIX standards.

• (Local) root access on the domserver and judgehosts for configuring sudo, installing some files with

restricted permissions and for (un)mounting the proc file system when using Java. See 7.3 (Security:

root privileges) for more details.

• A TCP/IP network which connects all DOMjudge and team computers. Extra network security which

restricts internet access and access to other services (ssh, mail, talk, etc..) is advisable, but not provided

by this software, see 7.5 (Security: external security) for more details. TCP/IP networking is used in

a few different ways:

– The judgehosts use TCP/IP connections to connect to the MySQL database on port 3306.

– HTTP traffic from teams, the public and jury to the web server, port 80 or 443.

– The ‘submit’ command line client connects to the web server also via HTTP.

When using the IP_ADDRESS authentication scheme, then each team computer needs to have a

unique IP address from the view of the DOMjudge server, see 4.3 (Contest setup: team authentication)

for more details.

2.2.2 Software requirements

The following software is required for running DOMjudge.

• For every supported programming language a compiler is needed; preferably one that can generate

statically linked stand-alone executables.

• Apache web server with support for PHP >= 5.2.0 and the mysqli and json extensions for PHP. We

also recommend the posix extension for extra debugging information.

• MySQL >= 4.1.x database and client software

• PHP >= 5.2.0 command line interface and the mysqli and json extensions.

• A POSIX compliant shell in /bin/sh (e.g. bash or ash)

• A statically compiled POSIX shell, located in lib/judge/sh-static (dash is included for Linux IA32)

• A lot of standard (GNU) programs, a probably incomplete list: hostname, date, dirname, basename,

touch, chmod, cp, mv, cat, grep, diff, wc, mkdir, mkfifo, mount, sleep, head, tail, pgrep

• sudo to gain root privileges

• Apache htpasswd

• xsltproc

from the GNOME XSLT library package.

• A LaTeX installation to regenerate the team PDF-manual with site specific configuration settings

included.

The following items are optional, but may be required to use certain functionality.

• phpMyAdmin , to be able to access the database in an emergency or for data import/export

CHAPTER 2. CONTEST PLANNING 10

• An NTP daemon (for keeping the clocks between jury system and judgehosts in sync)

• libcurl (to use the command line submit client with the web interface)

• libmagic (for command line submit client to detect binary file submissions)

• PECL xdiff extension (to reliably make diffs between submissions, DOMjudge will try alternative

approaches if it’s not available)

• PHP zip Extension (to upload problem data via zip bundles)

• beep for audible notification of errors, submissions and judgings, when using the default alert script.

Software required for building DOMjudge:

• gcc and g++ with standard libraries. Other compilers and libraries might also work: we have success-

fully compiled DOMjudge sources with Clang from the LLVM project; the C library should support

the POSIX.1-2008 specification.

• GNU make

• The Boost regular expression library and the GNU Multiple Precision library to build the

checktestdata program for advanced checking of input/output data correctness. These are optional

and can be disabled with the configure option –disable-checktestdata.

2.2.3 Requirements for team workstations

In the most basic setup the team workstations only need (next to the tools needed for program development)

a web browser. The web interface fully works with any known browser, but a HTML5-capable browser

adds more convenience funcions. With JavaScript disabled, all basic functionality remains working, with the

notable exception of multiple file uploads on non-HTML5-ready browsers.

3 Installation and configuration

This chapter details a fresh installation of DOMjudge. The first section is a Quick Installation Reference,

but that should only be used by those already acquainted with the system. A detailed guide follows after

that.

3.1 Quick installation

Note: this is not a replacement for the thorough installation instructions below, but more a cheat-sheet for

those who’ve already installed DOMjudge before and need a few hints. When in doubt, always consult the

full installation instruction.

External software:

• Install the MySQL-server, set a root password for it and make it accessible from all judgehosts.

• Install Apache, PHP and (recommended) phpMyAdmin.

• Make sure PHP works for the web server and command line scripts.

• Install necessary compilers on the judgehosts.

• See also 3.2 (an example command line for Debian GNU/Linux).

DOMjudge:

• Extract the source tarball and run ./configure [–enable-fhs] –prefix=<basepath>.

• Run make domserver judgehost docs or just those targets you want installed on the current host.

• Run make install-{domserver,judgehost,docs} as root to install the system.

On the domserver host:

• Install the MySQL database using bin/dj-setup-database -u root -r install on the domserver

host.

• Add etc/apache.conf to your Apache configuration, edit it to your needs, reload web

server: sudo ln -s .../domserver/etc/apache.conf /etc/apache2/conf.d/domjudge.conf &&

sudo apache2ctl graceful

• Check that the web interface works (/team, /public and /jury) and check that the jury interface is

password protected. Add individual user accounts for jury members to etc/htpasswd-jury.

• Add useful contest data through the jury web interface or with phpMyAdmin.

• Run the config checker in the jury web interface.

On the judgehosts:

• RedHat: useradd -d /nonexistent -g nobody -M -n -s /bin/false domjudge-run

Debian: useradd -d /nonexistent -g nogroup -s /bin/false domjudge-run

(check specific options of useradd, since these vary per system)

11

CHAPTER 3. INSTALLATION AND CONFIGURATION 12

• Add to /etc/sudoers.d/ or append to /etc/sudoers the sudoers configuration as in

etc/sudoers-domjudge.

• Copy the file etc/dbpasswords.secret from the domserver to all judgehosts to synchronise database

passwords.

• Optionally build a chroot to support interpreted or byte-compiled langauges such as Java, see the

appendix on A.1 (setting up a chroot).

• Start the judge daemon: bin/judgedaemon

It should be done by now. As a check that (almost) everything works, the set of test sources can be submitted:

cd tests

make check

Note that this requires AUTH_METHOD in etc/domserver-config.php to be configured to IPADDRESS or FIXED,

such that one team has passwordless access to the web interface. You may also want to set the environment

variable SUBMITBASEURL to your DOMjudge base URL, e.g. http://domjudge.example.com/.

Then, in the main jury web interface, select the admin link judging verifier to automatically verify most of

the test sources, except for a few with multiple possible outcomes; these have to be verified by hand. Read

the test sources for a description of what should (not) happen.

Optionally:

• Install the submit client on the team workstations.

• Generate one-time passwords for all the teams in the web interface.

• Further tighten the security of the system, e.g. by applying firewall rules.

• Start the balloon notification daemon: cd bin; ./balloons; or use the balloon web interface.

• Setup the Java chroot environment on the judgehosts to use Java with chroot:

bin/dj_make_chroot <chrootdir> <architecture>

$EDITOR lib/judge/chroot-startstop.sh

enable the chroot-startstop.sh script in etc/judgehost-config.php and add

etc/sudoers-domjudge to /etc/sudoers.d/ or append it to /etc/sudoers.

• Set up cgroup support in the judgedaemons.

• For additional features in the jury web interface, the following PHP extensions can be installed:

– xdiff PECL extension for diffs between submissions;

– zip PHP-bundled extension (–enable-zip) for uploading problem data as zip-bundles (enabled

by default in Debian, but not in all other Linux distributions).

3.2 Prerequisites

For a detailed list of the hardware and software requirements, please refer to the previous chapter on contest

planning.

CHAPTER 3. INSTALLATION AND CONFIGURATION 13

3.2.1 Debian installation command

For your convenience, the following command will install needed software on the DOMjudge server as men-

tioned above when using Debian GNU/Linux, or one of its derivate distributions like Ubuntu.

apt-get install gcc g++ make libcurl4-gnutls-dev mysql-server \

apache2 php5 php5-cli libapache2-mod-php5 php5-mysql php5-json \

php-geshi phpmyadmin \

ntp sudo procps xsltproc \

libboost-regex-dev libgmp3-dev linuxdoc-tools linuxdoc-tools-text \

transfig groff texlive-latex-recommended texlive-latex-extra \

texlive-fonts-recommended

On a judgehost, the following should be sufficient. The last line shows some example compilers to install for

C, C++, Java (GNU), Java (Oracle/Sun), Haskell and Pascal; change the list as appropriate.

apt-get install make sudo php5-cli php5-mysql php5-json ntp xsltproc procps \

gcc g++ gcj openjdk-6-jre-headless openjdk-6-jdk ghc fp-compiler

3.3 Installation system

The DOMjudge build/install system consists of a configure script and makefiles, but when installing it,

some more care has to be taken than simply running ’./configure && make && make install’. DOMjudge

needs to be installed both on the server and on the judgehosts. These require different parts of the complete

system to be present and can be installed separately. Within the build system these parts are referred to as

domserver, judgehost and additionally docs for all documentation.

There are three different methods for installing DOMjudge:

Single directory tree

With this method all DOMjudge related files and programs are installed in a single directory tree which

is specified by the prefix option of configure, like

./configure --prefix=$HOME/domjudge

This will install each of the domserver, judgehost, docs parts in a subdirectory

$HOME/domjudge/domserver etc. These subdirectories can be overridden from the defaults

with options like –with-domserver_root=DIR, see configure –help for a complete list. The prefix

defaults to /opt/domjudge.

Besides the installed files, there will also be directories for logging, temporary files, submitted sources

and judging data:

log

contains all log files.

tmp

contains temporary files.

submissions

(optionally) on the domserver contains all correctly submitted files: as backup only, the database

is the authoritative source. Note that this directory must be writable by the web server for this

feature to work.

CHAPTER 3. INSTALLATION AND CONFIGURATION 14

judgings

location on judgehosts where submissions are tested, each in its own subdirectory.

This method of installation is the default and probably most practical for normal purposes as it keeps

all files together, hence easily found.

FHS compliant

This method installs DOMjudge in directories according to the Filesystem Hierarchy Standard . It can

be enabled by passing the option –enable-fhs to configure and in this case the prefix defaults to

/usr/local. Files will be placed e.g. in PREFIX/share/domjudge, PREFIX/bin, /var/log, /tmp,

/etc/domjudge.

Maintainer install

Meant for those wishing to do development on the DOMjudge source code. See the E (appendix with

developer information).

After running the configure script, the system can be built and installed. Each of the domserver,

judgehost, docs parts can be built and installed separately, respectively by:

make domserver && sudo make install-domserver

make judgehost && sudo make install-judgehost

make docs && make install-docs

Note that even when installing e.g. in your own home directory, root privileges are still required for domserver

and judgehost installation, because user and group ownership of password files, some directories and to give

sudo access to runguard. One should not run DOMjudge programs and daemons under the root user

however, but under a normal user: runguard is specifically designed to be the only part invoked as root

(through sudo) to make this unnecessary and running as root will give rise to problems, see A.8 (runguard:

root privileges not dropped) in the common problems section.

For a list of basic make targets, run make in the source root directory without arguments.

3.4 Configuration

Configuration of the judge system is mostly done by editing the configuration variables on the page

Configuration settings available in the administrator interface. Changes take effect immediately.

Some settings that are tightly coupled to the filesystem can be configured in the files in etc:

domserver-config.php, judgehost-config.php, common-config.php for the configuration options of

the domserver, judgehost and shared configuration options respectively. The latter should be synchronised

between domserver and judgehosts. Descriptions of settings are included in these files. The judgedaemon

must be restarted for changes to take effect, while these are directly picked up by the webinterfaces.

Besides these settings, there are a few other places where changes can be made to the system, see 3.8 (other

configurable scripts).

3.5 Configuration of languages

Configuration of the compilers of the supported languages should be done separately. For each supported

language a shell-script named compile_<lang>.sh should be created and placed in lib/judge on the

judgehosts, where <lang> is the ID of the language as specified in the database. For more information,

CHAPTER 3. INSTALLATION AND CONFIGURATION 15

see for example compile_c.sh, and compile.sh in lib/judge for syntax. Note that compile scripts are

included for the most common languages already.

Interpreted languages and non-statically linked binaries can in principle also be used, but requires that all

dependencies are added to the chroot environment.

Interpreted languages do not generate an executable and in principle do not need a compilation step. How-

ever, to be able to use interpreted languages (also Oracle’s Java), a script must be generated during the

compilation step, which will function as the executable: the script must run the interpreter on the source.

See compile_perl.sh and compile_java_javac.sh in lib/judge for examples.

DOMjudge supports the use of Oracle (Sun) Java within a chroot environment. For this, a chroot environment

which includes the Java libraries must first be built. This can be accomplished with the included script

dj_make_chroot: run this as root and pass as arguments the target directory to build the chroot environment

in and as second argument the target machine architecture. Start the script without arguments for usage

information. See also sections 3.13 (Installation of a judgehost) and A.1 (Problems: Java & chroot).

3.6 Configuration of special run and compare programs

To allow for problems that do not fit within the standard scheme of fixed input and/or output, DOMjudge

has the possibility to change the way submissions are run and checked for correctness.

The back end script testcase_run.sh that handles the running and checking of submissions, calls separate

programs for running submissions and comparison of the results. These can be specialised and adapted to

the requirements per problem. For this, one has to create programs or scripts named run_<tag> and/or

compare_<tag> in the lib/judge directory, see run and compare for examples and usage information.

Then the <tag> must be specified in the special_run and/or special_compare fields of the problem (an

empty value means that the default run and compare scripts should be used). To simplify the use of custom

run and compare programs, DOMjudge comes with wrapper scripts that handle the tedious, standard part.

In most cases it will probably be convenient to use these, see run_wrapper and compare_wrapper for details,

and the usage explanations below.

3.6.1 Compare programs

Implementing a special compare program, also called a validator , can be done in two ways: either write

a program that is called directly (by testcase_run.sh) or use a copy of the compare_wrapper script. In

the first case, the compare program must adhere to the C (ICPC validator interface). The second case

is probably the easiest solution: the script compare_wrapper generates the XML result file and handles

redirection of input/output for you. Use this wrapper by copying or symlinking it to compare_<tag> and

let the jury write a checker program which can be called as

check_<tag> <testdata.in> <program.out> <testdata.out>

This program should write some kind of difference to stdout. No output from the checker program results

in a correct verdict and a nonzero exitcode in an internal (system) error. See as an example the included

program check_float, which compares floating point numbers. The name of the check program and any

parameters can also be modified in the compare_wrapper script.

For example, to compare output while ignoring DOS/UNIX newline differences, one can copy

compare_wrapper to compare_dos_newline_OK and in that file set the variable CHECK_PROGRAM="‘which

diff‘" and replace the line

CHAPTER 3. INSTALLATION AND CONFIGURATION 16

"$CHECK_PROGRAM" $CHECK_OPTIONS "$TESTIN" "$PROGRAM" "$TESTOUT" > "$DIFFOUT"

by the lines

sed -i ’s/\r$//’ "$TESTOUT"

sed ’s/\r$//’ "$PROGRAM" | $CHECK_PROGRAM -a - "$TESTOUT" > "$DIFFOUT"

Note that these commands will modify the local copy of the jury testdata, but the original output generated

by the team’s solution is retained, and a plain diff output is generated. Next, for each problem that you

want to use this validator for, set the special_compare field to dos_newline_OK. As an alternative to this

modified validator script, one can accept presentation errors as correct answers by adding the mapping

’presentation-error’ => ’correct’,

to the results_remap configuration variable (to be found in the admin web interface under configuration

settings).

For more details on modifying validator scripts, see the comments at the top of the files testcase_run.sh,

compare_wrapper and (when not using the wrapper) the appendix on the C (ICPC validator interface).

DOMjudge supports a presentation-error result. The default compare program returns this result when

output only differs by whitespace; this is counted as an incorrect submission. The script compare_wrapper

does not support presentation error results however. By default presentation errors are remapped to wrong

answer; this can be changed with results_remap.

3.6.2 Run programs

Special run programs can be used, for example, to create an interactive problem, where the contestants’

program exchanges information with a jury program and receives data depending on its own output. The

problem boolfind is included as an example interactive problem, see docs/examples/boolfind.pdf for the

description.

Usage is similar to compare programs: you can either create a program run_<tag> yourself, or use the

provided wrapper script, which handles bi-directional communication between a jury program and the con-

testants’ program on stdin/stdout.

For the first case, the calling syntax that the program must accept is equal to the calling syntax of

run_wrapper, which is documented in that file. When using run_wrapper, you should copy or symlink

it to another name run_<tag> and the jury must write a program named exactly runjury_<tag>, accept-

ing the calling syntax

runjury_<tag> <testdata.in> <program.out>

where the arguments are files to read input testdata from and write program output to, respectively. This

program will communicate via stdin/stdout with the contestants’ program. A special compare program

must probably also be created, so the exact data written to <program.out> is not important, as long as

the correctness of the contestants’ program can be deduced from the contents by the compare program.

CHAPTER 3. INSTALLATION AND CONFIGURATION 17

3.7 Alerting system

DOMjudge includes an alerting system. This allows the administrator to receive alerts when important

system events happen, e.g. an error occurs, or a submission or judging is made.

These alerts are passed to a plugin script alert which can easily be adapted to fit your needs. The default

script emits different beeping sounds for the different messages when the beep program is available, but it

could for example also be modified to send a mail on specific issues, connect to monitoring software like

Nagios, etc. For more details, see the script lib/alert.

3.8 Other configurable scripts

There are a few more places where some configuration of the system can be made. These are sometimes

needed in non-standard environments.

• In bin/dj_make_chroot on a judgehost some changes to variables can be made, most notably

DEBMIRROR to select a Debian mirror site near you.

• Optional scripts submit/submit_copy.sh and lib/judge/chroot-startstop.sh can be modified to

suit your local environment. See comments in those files for more information.

3.9 Submission methods

DOMjudge supports two submission methods: via the command line submit program and via the web

interface. From experience, both methods have users that prefer the one above the other. Note that the

submit client can only be used when the IPADDRESS authentication method is used.

The command line submit client can send submissions by either using the web interface internally (http

protocol, the default), or using a special command line submit protocol, called Dolstra. The latter has some

special features but is not usually needed. See D (Submitdaemon and the Dolstra protocol) for details on

this.

Using the http protocol with the submit client requires the libcURL library development files at compile

time (the submit client is statically linked to libcURL to avoid a runtime dependency).

The database is the authoritative version for submission sources; file system storage is available as an easy

way to access the source files and as backup. The program bin/restore_sources2db is available to recover

the submission table in the database from these files. The command line daemon will automatically store

sources on the file system; the web server needs write permissions on <domjudge_submitdir> and ignores

file system storage if these permissions are not set.

3.10 Database installation

DOMjudge uses a MySQL database server for information storage.

The database structure and privileges are included in MySQL dump files in the sql subdirectory. The

default database name is domjudge. This can be changed manually in the etc/dbpasswords.secret file:

the database name as specified in this file will be used when installing.

Installation of the database is done with bin/dj-setup-database. For this, you need an installed and

configured MySQL server and administrator access to it. Run

CHAPTER 3. INSTALLATION AND CONFIGURATION 18

dj-setup-database genpass

dj-setup-database [-u <admin_user>] [-p <password>|-r] install

This first creates the DOMjudge database credentials file etc/dbpasswords.secret (optionally change the

random generated password, although it is not needed for normal operation). Then it creates the database

and users and inserts some default/example data into the domjudge database. The option -r will prompt

for a password for mysql; when no user is specified, the mysql client will try to read credentials from

$HOME/.my.cnf as usual. The command uninstall can be passed to dj-setup-database to remove the

DOMjudge database and users; this deletes all data!

The domjudge database contains a number of tables, some of which need to be manually filled with data

before the contest can be run. See the 4.1 (database section of Contest setup) for details.

3.10.1 Fine tuning settings

For Apache, there are countless documents on how to maximise performance. Of particular importance is

to ensure that the MaxClients setting is high enough to receive the number of parallel requests you expect,

but not higher than your amount of RAM allows.

As for PHP, the use of an opcode cache like the Alternative PHP Cache (Debian package: php-apc) is

beneficial for performance. For uploading large testcases, see the A.7 (section about memory limits).

It may be desirable or even necessary to fine tune some MySQL default settings:

• max_connections: The default 100 is too low, because of the connection caching by Apache threads.

1000 is more appropriate.

• max_allowed_packet: The default of 16MB might be too low when using large testcases. This should

be changed both in the MySQL server and client configuration and be set to about twice the maximum

testcase size.

• skip-networking or bind-address: By default MySQL only listens on a local socket, but judgehosts

need to connect remotely to it. When enabling remote connections, you may want to limit it to only

the IP’s of judgehosts in the MySQL user configuration (or with firewall rules).

• Root password: MySQL does not have a password for the root user by default. It’s very desirable to

set one.

• Client connection settings: client connections from the judgehosts to the domserver are by default

unencrypted. Depending on your network setup it may be desirable to enable this. Also, enabling

compression can help when working with large testcase data.

• When maximising performance is required, you can consider to use the Memory (formerly Heap) table

for the scoreboard_public and scoreboard_jury tables. They will be lost in case of a full crash, but

can be recalculated from the jury interface.

3.10.2 Setting up replication or backups

The MySQL server is the central place of information storage for DOMjudge. Think well about what to do

if the MySQL host fails or loses your data.

A very robust solution is to set up a replicating MySQL server on another host. This will be a hot copy of

all data up to the second, and can take over immediately in the event of failure. The MySQL manual has

more information about setting this up.

CHAPTER 3. INSTALLATION AND CONFIGURATION 19

Alternatively, you can make regular backups of your data to another host, for example with mysqldump, or

use a RAID based system.

Replication can also be used to improve performance, by directing all select-queries to one or more replicated

slave servers, while updates will still be done to the master. This is not supported out of the box, and will

require making changes to the DOMjudge source.

3.11 Web server configuration

For the web interface, you need to have a web server (e.g. Apache) installed on the domserver and made

sure that PHP correctly works with it. Refer to the documentation of your web server and PHP for details.

You should turn PHP’s magic_quotes_* options off. We also recommend to turn off register_globals.

To configure the web server for DOMjudge, use the Apache configuration snippet from etc/apache.conf. It

contains examples for configuring the DOMjudge pages with an alias directive, or as a virtualhost, optionally

with SSL; it also contains PHP and security settings. Reload the web server for changes to take effect.

3.11.1 Jury authentication

Protection of the jury (and plugin) interface happens through HTTP basic-auth configured in Apache. A

default user domjudge_jury with password equal to that in etc/dbpasswords.secret is set at installation.

You should add accounts for the individual users (admins, judges) that will access the jury interface. These

users can be added with the htpasswd program to etc/htpasswd-jury:

htpasswd [<path to etc>]/htpasswd-jury <username>

Individual judge accounts are needed because actions in the jury interface, e.g. who claimed or verified a

submission, are tied to this user.

Apache supports many types of authentication backends, so it’s also possible to use LDAP, CAS, SAML

(Shibboleth) or any other means, as long as this results in a username being presented to DOMjudge. The

included apache.conf has examples.

For team authentication, see 4.3 (the relevant section in Contest Setup).

See also section 7.4.1 (Security: webserver privileges) for some details on file permissions for the

etc/dbpasswords.secret and etc/htpasswd-{jury,plugin} files.

3.12 Logging & debugging

All DOMjudge daemons and web interface scripts support logging and debugging in a uniform manner via

functions in lib.error.*. There are three ways in which information is logged:

• Directly to stderr for daemons or to the web page for web interface scripts (the latter only on serious

issues).

• To a log file set by the variable LOGFILE, which is set in each program. Unsetting this variable disables

this method.

• To syslog. This can be configured via the SYSLOG configuration variable in etc/common-config.php.

This option gives the flexibility of syslog, such as remote logging. See the syslog(daemon) documenta-

tion for more information. Unsetting this variable disables this method.

CHAPTER 3. INSTALLATION AND CONFIGURATION 20

Each script also defines a default threshold level for messages to be logged to stderr (VERBOSE: defaults

to LOG_INFO in daemons and LOG_ERR in the web interface) and for log file/syslog (LOGLEVEL: defaults to

LOG_DEBUG).

In case of problems, it is advisable to check the logs for clues. Extra debugging information can be obtained

by setting the config option DEBUG to a bitwise-or of the available DEBUG_* flags in etc/common-config.php,

to e.g. generate extra SQL query and timing information in the web interface.

3.13 Installation of a judgehost

A few extra steps might need to be taken to completely install and configure a judgehost.

For running solution programs under a non-privileged user, a user has to be added to the system(s) that

act as judgehost. This user does not need a home-directory or password, so the following command would

suffice to add a user ‘domjudge-run’ with minimal privileges.

On RedHat:

useradd -d /nonexistent -g nobody -M -n -s /bin/false domjudge-run

On Debian:

useradd -d /nonexistent -g nogroup -s /bin/false domjudge-run

For other systems check the specifics of your useradd command. This user must also be configured as the

user under which programs run via configure –enable-runuser=USER; the default is domjudge-run.

Runguard needs to be able to become root for certain operations like changing to the runuser and performing

a chroot. Also, the default chroot-startstop.sh script uses sudo to gain privileges for certain operations.

There’s a pregenerated /etc/sudoers.d/ snippet in etc/sudoers-domjudge that contains all required rules.

You can put the lines in the snippet at the end of /etc/sudoers, or, for modern sudo versions, place the

file in /etc/sudoers.d/. If you change the user you run the judgehost at, or the installation paths, be sure

to update the sudoers rules accordingly.

When the chroot setting is enabled (default), a static POSIX shell has to be available for copying it to the

chroot environment. For Linux i386, a static Dash shell is included, which works out of the box. For other

architectures or operating systems, a shell has to be added manually. Then simply point the lib/sh-static

symlink to this file. If you want to support languages that cannot be compiled to statically linked binaries,

e.g. byte-compiled languages such as Java, or interpreted languages such as Python, then a complete chroot

environment must be built and configured. See the appendix on A.1 (setting up a chroot) for more details.

Upon startup, the judgehost will connect to the domserver and add an entry for itself to the judgehosts

table, by default enabled. If you wish to add a new judgehost but have it initially disabled, you can add it

manually through the DOMjudge web interface and set it to disabled before starting the judgedaemon.

3.14 Building and installing the submit client

The submit client can be built with make submitclient. There is no make target to install the submit

client, as its location will very much depend on the environment. You might e.g. want to copy it to all team

computers or make it available on a network filesystem. Note that if the team computers run a different

(version of the) operating system than the jury systems, then you need to build the submit client for that

OS.

CHAPTER 3. INSTALLATION AND CONFIGURATION 21

The submit client needs to know the address of the domserver. This can be passed as a command line option

or environment variable. The latter option makes for easier usage. A sample script submit_wrapper.sh is

included, which sets this variable. See that script for more details on how to set this up.

3.14.1 The submit client under Windows/Cygwin

The submit client can also be built under Windows when the Cygwin environment is installed. First the

Cygwin setup.exe http://cygwin.com/setup.exe program must be downloaded and installed with GCC,

curl-devel and maybe some more packages included.

When Cygwin is correctly installed with all necessary development tools, the submit binary can be created

by running configure followed by make submit.exe in the submit directory.

3.15 (Re)generating documentation and the team manual

There are three sets of documentation available under the doc directory in DOMjudge:

the admin-manual

for administrators of the system (this document),

the judge-manual

for judges, describing the jury web interface and giving some general information about this system,

the team-manual

for teams, explaining how to use the system and what restrictions there are.

The team manual is only available in PDF format and must be built from the LaTeX sources in doc/team after

configuration of the system. A prebuilt team manual is included, but note that it contains default/example

values for site-specific configuration settings such as the team web interface URL and judging settings such

as the memory limit. We strongly recommend rebuilding the team manual to include site-specific settings

and also to revise it to reflect your contest specific environment and rules.

Besides a standard LaTeX installation, the team manual requires the svn and expdlist packages.

These are available in TeX Live in the texlive-latex-extra package in any modern Linux distribu-

tion. Alternatively, you can download and install them manually from their respective subdirectories in

http://mirror.ctan.org/macros/latex/contrib .

When the docs part of DOMjudge is installed and site-specific configuration set, the team manual can

be generated with the command genteammanual found under docs/team. The PDF document will be

placed in the current directory or a directory given as argument. The option -w WEBBASEURI can be

passed to set the base URI of the DOMjudge webinterface; it should end with a slash and defaults to

http://example.com/domjudge/. The following should do it on a Debian-like system:

sudo apt-get install make transfig texlive-latex-extra texlive-latex-recommended

cd .../docs/team

./genteammanual [-w http://your.location.example.com/domjudge/] [targetdir]

The team manual is currently available in two languages: English and Dutch. We welcome any translations

to other languages.

The administrator’s and judge’s manuals are available in PDF and HTML format and prebuilt from SGML

sources. Rebuilding these is not normally necessary. To rebuild them on a Debian-like system, the following

commands should do it:

http://cygwin.com/setup.exe
http://mirror.ctan.org/macros/latex/contrib

CHAPTER 3. INSTALLATION AND CONFIGURATION 22

sudo apt-get install linuxdoc-tools make transfig ghostscript groff texlive-latex-recommended

make -C doc/admin docs

make -C doc/judge docs

3.16 Optional features

3.16.1 Linux Control Groups (cgroups) in the judgedaemon

DOMjudge has experimental support for using Linux Control Groups or cgroups for process isolation in

the judgedaemon. Using cgroups gives more accurate measurement of actually allocated memory, which is

helpful with interpreters like Java that reserve but not actually use lots of memory. Also, the feature will

restrict network access so no separate measures are necessary, and allows to run multiple judgedaemons on

a multi-core machine.

The judgedaemon needs to run a recent Linux kernel (at least 3.2.0). The following steps configure cgroups

on Debian wheezy. Instructions for other distributions may be different (send us your feedback!).

• Install the necessary packages: # apt-get install libcgroup-dev cgroup-bin

• Edit grub config to add memory cgroup and swap accounting to the boot options. Edit

/etc/default/grub and change the default commandline to GRUB_CMDLINE_LINUX_DEFAULT="quiet

cgroup_enable=memory swapaccount=1". Then run update-grub and reboot.

• Compile DOMjudge with cgroup support. Re-run ./configure and look for cgroup in the output.

Then rebuild the runguard with make build.

You have now configured the system to use cgroups, but you need to create the actual cgroups that DOMjudge

will use. For that, you can use the script under misc-tools/create_cgroups. Edit the script to match your

situation first. This script needs to be re-run after each boot (e.g., add it to the judegedaemon init script).

3.16.2 Multiple judgedaemons per machine

With cgroup support set up, as per the section above, you can run multiple judgedaemons on one multi-cpu

or multi-core machine, dedicating one cpu core to each judgedaemon.

To that end, set the cpuset.cpus variable in etc/cgroup-domjudge.conf snippet correctly, e.g. to use all

cores on a quad-core machine set it to 0-3, and add extra unprivileged users to the system, i.e. add users

domjudge-run-<X> (where X runs through 0,1,2,3) with useradd as described in section 3.13 (installation

of a judgehost). Finally, start each of the judgedaemons with:

$ judgedaemon -n <X>

3.16.3 Source code syntax highlighting

To support coloured display of submitted source code in the jury interface, two external classes of syntax

highlighters are supported:

GeSHi http://qbnz.com/highlighter and the

PEAR http://pear.php.net

Text_Highlighter class http://pear.php.net/package/Text_Highlighter/ . DOMjudge includes a copy

of GeSHi under the lib/ext/ dir, but tries to find either of those in your PHP include path. When none

are found, DOMjudge falls back to source code display without highlighting.

http://qbnz.com/highlighter
http://pear.php.net
http://pear.php.net/package/Text_Highlighter/

CHAPTER 3. INSTALLATION AND CONFIGURATION 23

GeSHi

GeSHi is included by default under the lib/ext/ dir.

PEAR Text Highlighter

If you prefer the PEAR Text Highlighter, first move away the lib/ext/geshi directory. You can install the

Text Highlighter system wide with the PEAR-provided tools, like this: pear install Text_Highlighter.

Alternatively you can download the source code from the Text_Highlighter website and unpack that under

the lib/ext/ directory on the domserver. Rename the resulting Text_Highlighter-x.y.z directory to just

Text.

3.16.4 NTP time synchronisation

We advise to install an NTP-daemon (Network Time Protocol) to make sure the time between domserver

and judgehost (and team computers) is in sync.

3.16.5 Printing

It is recommended to configure the local desktop printing of team workstations whereever possible: this has

the most simple interface and allows teams to print from within their editor.

If this is not feasible, DOMjudge includes support for printing via the DOMjudge web interface: the DOM-

judge server then needs to be able to deliver the uploaded files to the printer. It can be enabled via the

enable_printing configuration option in the administrator interface. The exact command used to send the

files to a printer can be changed the function send_print() in lib/www/printing.php.

3.16.6 The plugin web interface

Next to the public, team and jury web interfaces, DOMjudge also provides a plugin web interface. This

web interface is still in beta/development so subject to change. The interface provides contest data from

DOMjudge in XML format and is meant to provide external programs (plugins) with data on the contest.

This allows for all kinds of extensions beyond the core functionality of DOMjudge such as providing a fancy

scoreboard with more statistics, aggregation of scoreboard data for a final presentation during the prize

ceremony.

As we are still thinking about possible uses and thus the data to be provided, the exact specification of this

interface may change. Also, we are especially interested in feedback and ideas.

There are currently two data-sets provided within the plugin subdirectory of the DOMjudge web interface,

both in XML format:

scoreboard.php

This page provides a representation of the scoreboard. Additionally it includes legend tables for

problems, languages, affiliations and team categories. It does not accept any arguments.

event.php

This page provides a representation of events that happened during the contest, including submissions,

judgings, contest state changes and general clarifications. This page accepts two arguments fromid

and toid to limit the output to events with event ID in that range.

CHAPTER 3. INSTALLATION AND CONFIGURATION 24

See these pages or the accompanying xsd-files for the exact structure.

A nice example plugin is DOMjura https://github.com/nickygerritsen/DOMjura by Nicky Gerritsen.

This provides a graphical resolver of the scoreboard from the freeze time until end of contest and can be

used during the final prize ceremony. It is a reimplementation of the resolver made by Tim deBoer for the

ICPC World Finals.

3.17 Upgrading

There is some support to upgrade DOMjudge to newer versions. Note that this functionality is not extensively

tested, so when you plan to upgrade, you are strongly advised to backup the DOMjudge database and other

data before continuing. We also advise to check the ChangeLog file for important changes.

Upgrading the filesystem installation is probably best done by installing the new version of DOMjudge in a

separate place and transferring the configuration settings from the old version.

There are SQL upgrade scripts to transform the database including its data to the layout of a newer version.

The scripts can be found under sql/upgrade and each script applies changes between two consecutive

DOMjudge versions. At the beginning of each script, a check is performed which will let MySQL bail out

with an error if it should not be applied anymore. Note that the scripts must be applied in order (sorted by

release). These scripts can be applied by running dj-setup-database upgrade.

https://github.com/nickygerritsen/DOMjura

4 Setting up a contest

After installation is successful, you want to run your contest! Configuring DOMjudge to run a contest (or a

number of them, in sequence) involves the following steps:

• Configure the contest data;

• Set up authentication for teams;

• Supply in- and output testdata;

• Check that everything works.

4.1 Configure the contest data

DOMjudge stores and retrieves most of its data from the MySQL database. Some information must be filled

in beforehand, other tables will be populated by DOMjudge.

You can use the jury web interface to add, edit and delete most types of data described below. It’s advised to

keep a version of phpMyAdmin handy in case of emergencies, or for general database operations like import

and export.

This section describes the meaning of each table and what you need to put into it. Tables marked with an

‘x’ are the ones you have to configure with contest data before running a contest (via the jury web interface

or e.g. with phpMyAdmin), the other tables are used automatically by the software:

auditlog Log of every state-changing event.

balloon Balloons to be handed out.

clarification Clarification requests/replies are stored here.

x configuration Runtime configuration settings.

x contest Contest definitions with start/end time.

event Log of events during contests.

judgehost Computers (hostnames) that function as judgehosts.

judging Judgings of submissions.

judging_run Result of one testcase within a judging.

x language Definition of allowed submission languages.

x problem Definition of problems (name, corresponding contest, etc.).

scoreboard_jury Cache of the scoreboards for public/teams and for the jury

scoreboard_public separately, because of possibility of score freezing.

submission Submission metadata of solutions to problems.

submission_file Submitted code files.

x team Definition of teams.

x team_affiliation Definition of institutions a team can be affiliated with.

x team_category Different category groups teams can be put in.

team_unread Records which clarifications are read by which team.

x testcase Definition of testdata for each problem.

Now follows a longer description (including fields) per table that has to be filled manually. As a general

remark: almost all tables have an identifier field. Most of these are numeric and automatically increasing;

these do not need to be specified. The tables language, problem, team, and team_affiliation have text

25

CHAPTER 4. SETTING UP A CONTEST 26

strings as identifier fields. These need to be manually specified and only alpha-numeric, dash and underscore

characters are valid, i.e. a-z, A-Z, 0-9, -, _.

configuration

This table contains configuration settings and is work in progress. These entries are simply stored as

name, value pairs.

contest

The contests that the software will run. E.g. a test session and the live contest.

cid is the reference ID and contestname is a descriptive name used in the interface.

activatetime, starttime and endtime are required fields and specify when this contest is active and

open for submissions. Optional freezetime and unfreezetime control scoreboard freezing. For a

detailed treating of these, see section 4.2 (Contest milestones).

The enabled field can be unset to allow for easier editing of contest times, as disabled contests are not

checked to overlap with other contests. A disabled contest will also not become active.

language

Programming languages in which to accept and judge submissions. langid is a string of maximum

length 8, which references the language; it is used internally as extension for source files and must

match the first extension listed for the language in the LANG_EXTS setting in the configuration files.

This reference is also used to call the correct compile script (lib/judge/compile_c.sh, etc.), so when

adding a new language, check that these match.

name is the displayed name of the language; allow_submit determines whether teams can submit using

this language; allow_judge determines whether judgehosts will judge submissions for this problem.

This can for example be set to no to temporarily hold judging when a problem occurs with the judging

of a specific language; after resolution of the problem this can be set to yes again.

time_factor is the relative factor by which the timelimit is multiplied for solutions in this language.

For example Java is/was known to be structurally slower than C/C++.

problem

This table contains the problem definitions. probid is the reference ID, cid is the contest ID this

problem is (only) defined for: a problem cannot be used in multiple contests. name is the full name

(description) of the problem.

allow_submit determines whether teams can submit solutions for this problem. Non-submittable

problems are also not displayed on the scoreboard. This can be used to define spare problems, which

can then be added to the contest quickly; allow_judge determines whether judgehosts will judge

submissions for this problem. See also the explanation for language.

timelimit is the timelimit in seconds within which solutions for this problem have to run (taking into

account time_factor per language).

special_run if not empty defines a custom run program run_<special_run> to run compiled sub-

missions for this problem and special_compare if not empty defines a custom compare program

compare_<special_compare> to compare output for this problem.

The color tag can be filled with a CSS colour specification to associate with this problem; see also

section 6.2.1 (Scoreboard: colours).

In problemtext a PDF, HTML or plain text document can be placed which allows team, public and

jury to download the problem statement. Note that no additional filtering takes place, so HTML (and

PDF to some extent) should be from a trusted source to prevent cross site scripting or other attacks.

The file type is stored in problemtext_type.

CHAPTER 4. SETTING UP A CONTEST 27

team

Table of teams: login is the account/login-name of the team (which is referenced to in other tables as

teamid) and name the displayed name of the team. categoryid is the ID of the category the team is

in; affilid is the affiliation ID of the team.

authtoken is a generic field used by several of the supported authentication mechanisms to store a

piece of information it needs to identify the team. The content of the field for each of the mechanisms

is:

• IPADDRESS: field contains the IP address of the team’s workstation

• PHP_SESSIONS: contains a hash of the password that the team can log in with

• LDAP: contains the LDAP name (e.g. CN) corresponding to this DOMjudge user

When enabled is set to 0, the team immediately disappears from the scoreboards and cannot use the

team web interface anymore, even when already logged in. One use case could be to disqualify a team

on the spot.

members are the names of the team members, separated by newlines and room is the location or room

of the team, both for display only; comments can be filled with arbitrary useful information and is

only visible to the jury. The timestamp teampage_first_visited and the hostname field indicate

when/whether/from where a team visited its team web interface.

team_affiliation

affilid is the reference ID and name the name of the institution. country should be the 3 character

ISO 3166-1 alpha-3 abbreviation of the country and comments is a free form field that is displayed in

the jury interface.

Both for the country and the affiliation, a logo can be displayed on the scoreboard. For this to work,

the affilid must match a logo picture located in www/images/affiliations/<affilid>.png and

country must match a (flag) picture in www/images/countries/<country>.png. All country flags

are present there, named with their 3-character ISO codes. See also www/images/countries/README.

If either file is not present the respective ID string will be printed instead.

team_category

categoryid is the reference ID and name is a string: the name of the category. sortorder is the order

at which this group must be sorted in the scoreboard, where a higher number sorts lower and equal

sort depending on score.

The color is again a CSS colour specification used to discern different categories easily. See also section

6.2.1 (Scoreboard: colours).

The visible flag determines whether teams in this category are displayed on the public/team score-

board. This feature can be used to remove teams from the public scoreboard by assigning them to a

separate, invisible category.

testcase

The testcase table contains testdata for each problem; testcaseid is a unique identifier, input and

output contain the testcase input/output and md5sum_input, md5sum_output their respective md5

hashes to check for up-to-date-ness of cached versions by the judgehosts. probid is the corresponding

problem and rank determines the order of the testcases for one problem. description is an optional

description for this testcase. See also 4.4 (providing testdata).

CHAPTER 4. SETTING UP A CONTEST 28

4.2 Contest milestones

The contest table specifies timestamps for each contest that mark specific milestones in the course of the

contest.

The triplet activatetime, starttime and endtime define when the contest runs and are required fields (acti-

vatetime and starttime may be equal).

activatetime is the moment when a contest first becomes visible to the public and teams (potentially replacing

a previous contest that was displayed before). Nothing can be submitted yet and the problem set is not

revealed. Clarifications can be viewed and sent.

At starttime, the scoreboard is displayed and submissions are accepted. At endtime the contest stops. New

incoming submissions will be stored but not processed; unjudged submissions received before endtime will

still be judged.

freezetime and unfreezetime control scoreboard freezing. freezetime is the time after which the public and

team scoreboard are not updated anymore (frozen). This is meant to make the last stages of the contest

more thrilling, because no-one knows who has won. Leaving them empty disables this feature. When using

this feature, unfreezetime can be set to automatically ‘unfreeze’ the scoreboard at that time. For a more

elaborate description, see also section 6.2.3 (Scoreboard: freezing and defrosting).

The scoreboard, results and clarifications will remain to be displayed to team and public after a contest,

until an activatetime of a later contest passes.

All events happen at the first moment of the defined time. That is: for a contest with starttime "12:00:00"

and endtime "17:00:00", the first submission will be accepted at 12:00:00 and the last one at 16:59:59.

The following ordering must always hold: activatetime <= starttime < (freezetime <=) endtime (<=

unfreezetime). No two contests may have overlap: there’s always at most one active contest at any time.

4.3 Team authentication

The authentication system lets domserver know which team it is dealing with. This system is modular,

allowing flexible addition of new methods, if required. The following methods are available by default for

team authentication.

4.3.1 PHP session with passwords (default)

Each team receives a password and PHP’s session management is used to keep track of which team is logged

in. This method is easiest to setup. It does require the administrator to generate passwords for all teams

(this can be done in the jury interface) and distribute those, though. Also, each team has to login each time

they (re)start their browser. The password is stored in a salted MD5 hash in the authtoken field in database

(team table).

4.3.2 IP-address based

The IP-address of a team’s workstation is used as the primary means of authentication. The system assumes

that someone coming from a specific IP is the team with that IP listed in the team table. When a team

browses to the web interface, this is checked and the appropriate team page is presented.

This method has the advantage that teams do not have to login. A requirement for this method is that each

team computer has a separate IP-address from the view of the domserver, though, so this is most suitable

CHAPTER 4. SETTING UP A CONTEST 29

for onsite contests and might not work with online contests if multiple teams are located behind a router,

for example. Furthermore, with this method the command line submitclient can be used next to the web

interface submit.

There are three possible ways of configuring team IP-addresses.

Supply it beforehand

Before the contest starts, when entering teams into the database, add the IP that each team will have to

that team’s entry in the authtoken field. When the teams arrive, everything will work directly and without

further configuration (except when teams switch workplaces). If possible, this is the recommended modus

operandi, because it’s the least hassle just before and during the contest.

Use one-time passwords

Supply the teams with a one time password with which to authenticate. Beforehand, generate passwords for

each team in the jury interface. When the test session (or contest) starts and a team connects to the web

interface and have an unknown IP, they will be prompted for username and password. Once supplied, the

IP is stored and the password is removed and not needed anymore the next time.

This is also a secure option, but requires a bit more hassle from the teams, and maybe from the organisers

who have to distribute pieces of paper.

Note: the web interface will only allow a team to authenticate themselves once. If an IP is set, a next

authentication will be refused (to avoid trouble with lingering passwords). In order to fully re-authenticate

a team, the IP address needs to be unset. You might also want to generate a new password for this specific

team. Furthermore, a team must explicitly connect to the team interface, because with an unknown IP, the

root DOMjudge website will redirect to the public interface.

Set IP upon first submission

This is only possible with the D (Dolstra protocol). The advantage is that no prior mapping needs to be

configured, but the disadvantage is that the team interface cannot be viewed until at least one submission

was made; there are also more constraints on the system. See the section on the Dolstra protocol for details.

The authtoken field in the database contains either the IP-address, or an MD5 hash of the one-time password

if this was set and the team has not authenticated yet.

4.3.3 Using an external LDAP server

This method can be useful when you want to integrate DOMjudge into a larger system, or already have

credentials on an LDAP server available. The authtoken field in the database must contain the LDAP

username of the DOMjudge team. Furthermore, in etc/domserver-config.php the LDAP_* configuration

settings must be adapted to your setup. Note that multiple (backup) servers can be specified: they are

queried in order to try to successfully authenticate. After successful authentication against the LDAP

server(s), PHP sessions are used to track login into DOMjudge.

4.3.4 Fixed team authentication

This method automatically authenticates each connection to the team web interface as a fixed, configurable

team. This can be useful for testing or demonstration purposes, but probably not for real use scenario’s.

CHAPTER 4. SETTING UP A CONTEST 30

4.3.5 Adding new authentication methods

The authentication system is modular and adding new authentication methods is fairly easy. The authentica-

tion is handled in the file lib/www/auth.team.php. Adding a new method amounts to editing the functions

in that file to handle your specific case.

4.4 Providing testdata

Testdata is used to judge the problems: when a submission run is given the input testdata, the resulting

output is compared to the reference output data. If they match exactly, the problem is judged to be

correct. For problems with a special compare script, testdata should still be provided in the same way, but

the correctness depends on the output of the custom compare script. Please check the documentation in

judge/compare_wrapper when using this feature.

The database has a separate table named testcase, which can be manipulated from the web interface. Under

a problem, click on the testcase link. There the files can be uploaded. The judgehosts cache a copy based

on MD5 sum, so if you need to make changes later, re-upload the data in the web interface and it will

automatically be picked up.

Testdata can also be imported into the system from a zip-bundle on each problem webpage. Each pair of

files <path-to-file>/<filename>.in and corresponding *.out found in the zip-bundle will be added as

testdata. Furthermore, when the file domjudge-problem.ini exists, then problem properties are read from

that file in INI-syntax. All keys from the problem table are supported, so an example contents could be:

probid = hello

name = Hello world!

allow_submit=false

color=blue

Testcases will be added to those already present and imported properties will overwrite those in the database.

A completely new problem can also be imported from a zip-bundle on the problems overview webpage; in

that case, note that if the file domjudge-problem.ini is not present, a default value is chosen for the

unmodifiable primary key probid (as well as for the other keys). It is possible to upload multiple zip files

in one go, each of which will be added as a separate problem.

4.5 Start the daemons

Once everything is configured, you can start the daemons. They all run as a normal user on the system.

The needed root privileges are gained through sudo only when necessary.

• One or more judgedaemons, one on each judgehost;

• Optionally the balloon notification daemon.

4.6 Check that everything works

If the daemons have started without any problems, you’ve come a long way! Now to check that you’re ready

for a contest.

CHAPTER 4. SETTING UP A CONTEST 31

First, go to the jury interface: http://www.your-domjudge-location/jury. Look under all the menu items

to see whether the displayed data looks sane. Use the config-checker under ‘Admin Functions’ for some sanity

checks on your configuration.

Go to a team workstation and see if you can access the team page and if you can submit solutions.

Next, it is time to submit some test solutions. If you have the default Hello World problem enabled, you can

submit some of the example sources from under the doc/examples directory. They should give ‘CORRECT’.

You can also try some (or all) of the sources under tests. Use make check to submit a variety of tests; this

should work when the submit client is available and the default example problems are in the active contest.

There’s also make stress-test, but be warned that these tests might crash a judgedaemon. The results

can be checked in the web interface; each source file specifies the expected outcome with some explanations.

For convenience, there is a link judging verifier in the admin web interface; this will automatically check

whether submitted sources from the tests directory were judged as expected. Note that a few sources have

multiple possible outcomes: these must be verified manually.

When all this worked, you’re quite ready for a contest. Or at least, the practice session of a contest.

4.7 Testing jury solutions

Before running a real contest, you and/or the jury will want to test the jury’s reference solutions on the

system.

There is no special feature for testing their solutions under DOMjudge. The simplest approach is to submit

these solutions as a special team. This method requires a few steps and some carefulness to prevent a

possible information leak of the problemset. It is assumed that you have completely configured the system

and contest and that all testdata is provided. To submit the jury solutions the following steps have to be

taken:

• change the contest time to make the contest currently active;

• setup a special team at a local computer;

• submit the jury solutions as that team;

• check that all solutions are judged as expected in the jury interface;

• revert the contest to the original times.

Note that while the contest time is changed to the current time, anyone might be able to access the public

or team web-interface: there’s not too much there, but on the scoreboard the number of problems and their

titles can be read. To prevent this information leak, one could disconnect the DOMjudge server, judgehosts

and the computer used for submitting from the rest of the network.

Furthermore, you should make sure that the team you submit the solutions as, is in a category which is set

to invisible, so that it doesn’t show up on the public and team scoreboard. The sample team "DOMjudge"

could be used, as it is in the "Organisation" category, which is not visible by default.

5 Team Workstations

Here’s a quick checklist for configuring the team workstations. Of course, when hosting many teams, it

makes sense to generate a preconfigured account that has these features and can be distributed over the

workstations.

1. The central tool teams use to interact with DOMjudge is the web browser.

• If possible, set the Home Page to your.domjudge.location/team/

• Go to the team page and check if this team is correctly identified.

• If using https and a self signed certificate, add this certificate to the browser certificate list to

prevent annoying dialogs.

2. Make sure compilers for the supported languages are installed and working.

3. Provide teams with the command line submit client and check that it works.

4. Make the sample in- and output data from the problem set available.

5. Add your SSH key to their authorized_keys file, so you can always access their account for wiping and

emergencies.

6. Check that internet access is blocked.

32

6 Web interface

The web interface is the main point of interaction with the system. Here you can view submissions coming

in, control judging, view the standings and edit data.

6.1 Jury and Administrator view

The jury interface has two possible views: one for jury members, and one for DOMjudge administrators.

The second view is the same as the jury view, but with more features added. Which to show is decided by

using the HTTP authentication login used to access the web interface; you can list which HTTP users are

admin with the variable DOMJUDGE_ADMINS in etc/domserver-config.php.

This separation is handy as a matter of security (jury members cannot (accidentally) modify things that

shouldn’t be) and clarity (jury members are not confused / distracted by options they don’t need).

Options offered to administrators only:

• Adding and editing any contest data

• Managing team passwords

• The config checker

• Refreshing the scoreboard & hostname caches

• Rejudge ’correct’ submissions

• Restart ’pending’ judgings

Furthermore, some quick link menu items might differ according to usefulness for jury or admins.

A note on rejudging: it is policy within the DOMjudge system that a correct solution cannot be reverted

to incorrect. Therefore, administrator rights are required to rejudge correct or pending (hence, possibly

correct) submissions. For some more details on rejudging, see the jury manual.

6.2 The scoreboard

The scoreboard is the canonical overview for anyone interested in the contest, be it jury, teams or the general

public. It deserves to get a section of its own.

6.2.1 Colours and sorting

Each problem can be associated with a specific colour, e.g. the colour of the corresponding balloon that is

handed out. DOMjudge can display this colour on the scoreboard, if you fill in the ‘color’ attribute in the

‘problem’ table; set it to a valid CSS colour value (e.g. ‘green’ or ‘#ff0000’, although a name is preferred for

displaying colour names).

It’s possible to have different categories of teams participating, this is controlled through the ‘team_category’

table. Each category has its own background colour in the scoreboard. This colour can be set with the ‘color’

attribute to a valid CSS colour value.

33

CHAPTER 6. WEB INTERFACE 34

If you wish, you can also define a sortorder in the category table. This is the first field that the scoreboard is

sorted on. If you want regular teams to be sorted first, but after them you want to sort both spectator- and

business teams equally, you define ‘0’ for the regular category and ‘1’ for the other categories. To completely

remove a category from the public (but not the jury) scoreboard, the category visible flag can be set to ‘0’.

6.2.2 Starting and ending

The displayed scoreboard will always be that of the most recently started contest. The scoreboard is never

displayed for a contest that still has to start. In other words, the scores will become visible on the first

second of a contest start time.

When the contest ends, the scores will remain to be displayed, until a next contest starts.

6.2.3 Freezing and defrosting

DOMjudge has the option to ‘freeze’ the public- and team scoreboards at some point during the contest.

This means that scores are no longer updated and remain to be displayed as they were at the time of the

freeze. This is often done to keep the last hour interesting for all. The scoreboard freeze time can be set

with the ‘freezetime’ attribute in the contest table.

The scoreboard freezing works by looking at the time a submission is made. Therefore it’s possible that

submissions from (just) before the freezetime but judged after it can still cause updates to the public

scoreboard. A rejudging during the freeze may also cause such updates.

If you do not set any freeze time, this option does nothing. If you set it, the public and team scoreboards will

not be updated anymore once this time has arrived. The jury will however still see the actual scoreboard.

Once the contest is over, the scores are not directly ‘unfrozen’. This is done to keep them secret until e.g.

the prize ceremony. You can release the final scores to team and public interfaces when the time is right.

You can do this either by setting a predefined ‘unfreezetime’ in the contest table, or you push the ‘unfreeze

now’ button in the jury web interface, under contests.

6.2.4 Clickability

Almost every cell is clickable in the jury interface and gives detailed information relevant to that cell. This

is (of course) not available in the team and public scoreboards, except that in the team and public interface

the team name cell links to a page with some more information and optionally a team picture.

6.2.5 Caching

The scoreboard is not recalculated on every page load, but rather cached in the database. It should be safe

for repeated reloads from many clients. In exceptional situations (should never occur in normal operation,

e.g. a bug in DOMjudge), the cache may become inaccurate. The jury administrator interface contains an

option to recalculate a fresh version of the entire scoreboard. You should use this option only when actually

necessary, since it puts quite a load on the database.

6.2.6 Exporting to an external website

In many cases you might want to create a copy of the scoreboard for external viewing from the internet. The

command bin/static_scoreboard is provided just for that. It writes to stdout a version of the scoreboard

CHAPTER 6. WEB INTERFACE 35

with refresh meta-tags and links to team pages removed. This command can for example be run every

minute and the output be placed as static content on a publicly reachable webserver.

6.3 Balloons

In many contests balloons are handed out to teams that solve a particular problem. DOMjudge can help

in this process: both a web interface and a notification daemon are available to notify that a new balloon

needs to be handed out. Note that only one should be used at a time.

The web based tool is reachable from the main page in the jury interface, where each balloon has to be

checked off by the person handing it out.

For the daemon, set the BALLOON_CMD in bin/balloons to define how notifications are sent. Examples

are to mail to a specific mailbox or to send prints to a printer. When configured, start bin/balloons and

notification will start.

Notifications will stop as soon as the scoreboard is frozen. Enable the show_balloons_postfreeze to keep

issuing balloon notifications after the freeze.

7 Security

This judging system was developed with security as one of the main goals in mind. To implement this

rigorously in various aspects (restricting team access to others and the internet, restricting access to the

submitted programs on the domjudge systems, etc...) requires root privileges to different parts of the whole

contest environment. Also, security measures might depend on the environment. Therefore we have decided

not to implement security measures which are not directly related to the judging system itself. We do have

some suggestions on how you can setup external security.

7.1 Considerations

Security considerations for a programming contest are a bit different from those in normal conditions: nor-

mally users only have to be protected from deliberately harming each other. During a contest we also have

to restrict users from cooperatively communicating, accessing restricted resources (like the internet) and

restrict user programs running on judgehosts.

We expect that chances are small that people are trying to cheat during a programming contest: you have

to hack the system and make use of that within very limited time. And you have to not get caught and

disqualified afterwards. Therefore passive security measures of warning people of the consequences and only

check (or probe) things will probably be enough.

However we wanted the system to be as secure as possible within reason. Furthermore this software is open

source, so users can try to find weak spots before the contest.

7.2 Internal security

Internal security of the system relies on users not being able to get to any vital data (jury input/output and

users’ solutions). Data is stored in two places: in files on the DOMjudge system account and in the SQL

database.

Files should be protected by restricting permission to the relevant directories. Database access is protected

by passwords. The default permissions allow connections from all hosts, so make sure you restrict this

appropriately or choose strong enough passwords.

Note: the database password is stored in etc/dbpasswords.secret. This file has to be non-readable to

teams, but has to be readable to the web server to let the jury web interface work. A solution is to make it

readable to a special group the web server runs as. This is done when using the default configuration and

installation method and when make install-{domserver,judgehost} is run as root. The webserver group

can be set with configure –with-webserver-group=GROUP which defaults to www-data.

Judgehosts and the domserver communicate with each other through the MySQL protocol. By default,

MySQL does not encrypt these connections. Refer to the MySQL manual to configure SSL for the server

and enable the option in common-config.php to enable it for client connections; alternatively you can employ

an SSH tunnel or ensure in the network setup that these connections are separated from the team network.

The jury web interface is protected by HTTP Authentication. These credentials are essentially sent plain-

text, so we advise to setup HTTPS at least for the jury interface, but preferably for all web interfaces. By

default the domjudge_jury user will be given full access. You can choose to add more users to the file

etc/htpasswd-jury. In etc/domserver-config.php you can add these users to the list DOMJUDGE_ADMINS.

36

CHAPTER 7. SECURITY 37

Most data-modification functions are restricted to only users in this list. See also the judge manual for some

more details.

Secondly, the submitted sources should not be interceptable by other teams (even though that, if these would

be sent clear-text, a team would normally need to be root/administrator on their computer to intercept this).

This can be accomplished by using HTTPS for the web interface. The D (Dolstra submission method) by

default uses SSH to send files over the network.

There are multiple authentication methods for teams, each having its own issues to check for.

When using IP address authentication, one has to be careful that teams are not able to spoof their IP (for

which they normally need root/administrator privileges), as they would then be able to view other teams’

submission info (not their code) and clarifications and submit as that team. Note: This means that care has

to be taken e.g. that teams cannot simply login onto one another’s computer and spoof their identity.

When using PHP sessions or LDAP, authentication data is sent via HTTP, so we strongly advise to use

HTTPS in that case.

Problem texts can be uploaded to DOMjudge. No filtering is performed there, so make sure they are from

trusted sources to, in the case of HTML, prevent cross site scripting code to be injected.

7.3 Root privileges

A difficult issue is the securing of submitted programs run by the jury. We do not have any control over

these sources and do not want to rely on checking them manually or filtering on things like system calls

(which can be obscured and are different per language).

Therefore we decided to tackle this issue by running these programs in a environment as restrictive as possible.

This is done by setting up a minimal chroot environment. For this, root privileges on the judgehosts and

statically compiled programs are needed. By also limiting all kinds of system resources (memory, processes,

time, unprivileged user) we protect the system from programs which try to hack or could crash the system.

However, a chroot environment does not restrict network access, so there lies a possible security risk that

has to be handled separately.

7.4 File system privileges

Of course you must make sure that the file system privileges are set such that there’s no unauthorised

access to sensitive data, like submitted solutions or passwords. This is quite system dependent. At least

<judgehost_judgedir> should not be readable by other users than DOMjudge.

7.4.1 Permissions for the web server

The default installation sets permissions correctly for the web server user (commonly www-data). The

following information is for those who want to verify the setup or make modifications to the settings.

Care should be taken with the etc dir: the domserver-{config,static}.php, htpasswd-* and

dbpasswords.secret files should all be readable, but dbpasswords.secret and the htpasswd files should

not be readable by anyone else. This can be done for example by setting the etc directory to owner:group

<DOMjudge account>:<Web server group> and permissions drwxr-x–-, denying users other than yourself

and the web server group access to the configuration and password files.

If you want the web server to also store incoming submission sources on the file system (next to the database),

then <domserver_submitdir> must be writable for the web server, see also 3.9 (submission methods).

CHAPTER 7. SECURITY 38

You should take care not to serve any files over the web that are not under the DOMjudge ’www/’ directory,

because they might contain sensitive data (e.g. those under etc/). DOMjudge comes with .htaccess files

that try to prevent this, but double-check that it’s not accessible.

7.5 External security

The following security issues are not handled by DOMjudge, but left to the administrator to set up.

Network traffic between team computers, domserver and the internet should be limited to what is allowed.

Possible ways of enforcing this might be: monitor traffic, modify firewall rules on team computers or (what

we implemented with great satisfaction) put all team computers behind a firewalling router.

Solutions are run within a restricted (chroot) environment on the judgehosts. This however does not restrict

network access, so a team could try to send in a solution that tries to send input testdata back to them,

access the internet, etc... A solution to this problem is to disallow all network traffic for the test user on the

judgehosts. On Linux, this can be accomplished by modifying the iptables, adding a rule like:

iptables -I OUTPUT -m owner --uid-owner <testuser_uid> -j REJECT

A Common problems and their

solutions

A.1 Java compilers and the chroot

Java is difficult to deal with in an automatic way. It is probably most preferable to use Oracle (previously

Sun) Java, because that’s the version contestants will be used to. The GNU Compiler for Java (GCJ) is

easier to deal with but may lack some features.

With the default configuration, submitted programs are run within a minimal chroot environment. For this

the programs have to be statically linked, because they do not have access to shared libraries.

For most languages compilers support this, but for Java, this is a bit problematic. The Oracle Java compiler

‘javac’ is not a real compiler: a bytecode interpreter ‘java’ is needed to run the binaries and thus this cannot

simply run in a chroot environment.

There are some options to support Java as a language:

1. One can build a bigger chroot environment which contains all necessary ingredients to let Java work

within it. DOMjudge supports this with some manual setup.

First of all, a chroot tree with Java support must be created. The script bin/dj_make_chroot creates

one from Debian GNU/Linux sources; run that script without arguments for basic usage information.

Next, edit the script lib/judge/chroot-startstop.sh and adapt it to work with your local system

and uncomment the script in etc/judgehost-config.php.

2. As an alternative the gcj compiler from GNU can be used instead of Oracle’s version. This one

generates true machine code and can link statically. However a few function calls cannot be linked

statically (see ‘GCJ compiler warnings’ in this FAQ). Secondly, the static library libgcj.a doesn’t

seem to be included in all GNU/Linux distributions: at least not in RedHat Enterprise Linux 4.

3. One can disable the chroot environment in etc/judgehost-config.php by disabling USE_CHROOT.

Disabling the chroot environment removes this layer of security against submissions that attempt to

cheat, but it is a simple solution to getting Java to work, for demo or testing purposes. No guarantees

about system security can be made when running a contest with chroot disabled.

A.2 The Java virtual machine (jvm) and memory limits

DOMjudge imposes memory limits on submitted solutions. These limits are imposed before the compiled

submissions are started. On the other hand, the Java virtual machine is started via a compile-time generated

script which is run as a wrapper around the program. This means that the memory limits imposed by

DOMjudge are for the jvm and the running program within it. As the jvm uses approximately 300MB, this

reduces the limit by this significant amount. See judge/compile_java_javac.sh for the implementation

details.

If you see error messages of the form

Error occurred during initialization of VM

java.lang.OutOfMemoryError: unable to create new native thread

39

APPENDIX A. COMMON PROBLEMS AND THEIR SOLUTIONS 40

or

Error occurred during initialization of VM

Could not reserve enough space for object heap

Then the problem is probably that the jvm needs more memory than what is reserved by the Java compile

script. You should try to increase the MEMRESERVED variable in judge/compile_java.sh and check that the

configuration variable memory-limit is set larger than MEMRESERVED.

A.3 Java class naming

Java requires a specific naming of the main class. When declaring the main class public, the filename must

match the class name. Therefore one should not declare the main class public; from experience however,

many teams do so. Secondly, the Java compiler generates a bytecode file depending on the class name. There

are two ways to handle this.

The simplest Java compile script compile_java_javac.sh requires the main class to be named Main with

method

public static void main(String args[])

The alternative (and default) is to use the script compile_java_javac_detect.sh, which automatically

detects the main class and even corrects the source filename when it is declared public.

When using the GNU gcj compiler, the same holds and two similar scripts compile_java_gcj.sh and

compile_java_gcj_detect.sh are available.

A.4 GCJ compiler warnings

When using the GNU GCJ compiler for compiling Java sources, it can give a whole lot of warning messages

of the form

/usr/lib/gcc-lib/i386-linux/3.2.3/libgcj.a(gc_dlopen.o)(.text+0xbc):

In function ‘GC_dlopen’: Using ’dlopen’ in statically linked

applications requires at runtime the shared libraries from the glibc

version used for linking

These are generated because you are trying to compile statically linked sources, but some functions can not

be static, e.g. the ‘dlopen’ function above. These are warnings and can be safely ignored, because under

normal programming contest conditions people are not allowed to use these functions anyway (and they are

not accessible within the chroot-ed environment the program is run in).

To filter these warnings, take a look at judge/compile_java_gcjmod.sh and replace or symlink

judge/compile_java.sh by/to this file.

APPENDIX A. COMMON PROBLEMS AND THEIR SOLUTIONS 41

A.5 Error: ‘submit_copy.sh failed with exitcode XX’

This error can have various causes. First of all: check the submit.log file for more complete error messages.

Assuming the default configuration where submit_copy.sh uses ‘scp’, we have found that shell initialisation

scripts might contain statements which generate errors: scp runs the user’s default shell when copying

submission files and when the shell dies (e.g. because of not having a terminal), the copying fails.

Another cause might be that you do not have automatic access to the team’s account (e.g. using ssh keys).

A.6 C#/mono support

Using the mono compiler and runtime for C# gives rise to similar problems as with Java. Although the C#

language has been added to DOMjudge, there’s no support yet to run it within a chroot environment. So in

that case, USE_CHROOT must be disabled.

A.7 Memory limit errors in the web interface

When uploading large testdata files, one can run into an error in the jury web interface of the form:

Fatal error: Allowed memory size of XX bytes exhausted (tried to

allocate YY bytes) in /home/domjudge/system/lib/lib.database.php

on line 154

This means that the PHP engine has run out of memory. The solution is to raise the memory limits for PHP.

This can be done by either editing etc/apache.conf and raising the memory_limit, upload_max_filesize

and post_max_size values to well above the size of your largest testcase. You can change these parameters

under the jury directory or by directly editing the global Apache or php.ini configuration. Note also that

max_file_uploads must be larger than the maximum number of testcases per problem to be able to upload

and edit these in the web interface.

The optional PHP Suhosin module may also impose additional limits; check your error logging to see if these

are triggered. You may also need to raise MySQL’s max_allowed_packet parameter in /etc/mysql/my.cnf

on both server and client.

A.8 Compiler errors: ‘runguard: root privileges not dropped’

Compiling failed with exitcode 255, compiler output:

/home/domjudge/system/bin/runguard: root privileges not dropped

When the above error occurs on submitting any source, this indicates that you are running the judgedaemon

as root user. You should not run any part of DOMjudge as root; the parts that require it will gain root by

themselves through sudo. Either run it as yourself or, probably better, create dedicated a user domjudge

under which to install and run everything.

Also do not confuse this with the domjudge-run user: this is a special user to run submissions as and should

also not be used to run normal DOMjudge processes; this user is only for internal use.

B Multi-site contests

This manual assumed you are running a singe-site contest; that is, the teams are located closely together,

probably in a single physical location. In a multi-site or distributed contest, teams from several remote

locations use the same DOMjudge installation. An example is a national contest where teams can participate

at their local institution.

DOMjudge supports such a setup on the condition that a central installation of DOMjudge is used to which

the teams connect over the internet. It is here where all submission processing and judging takes place.

Because DOMjudge uses a web interface for all interactions, teams and judges will interface with the system

just as if it were local. Still, there are some specific considerations for a multi-site contest.

Network: there must be a relatively reliable network connection between the locations and the central

DOMjudge installation, because teams cannot submit or query the scoreboard if the network is down.

Because of travelling an unsecured network, you may want to consider HTTPS for encrypting the traffic. If

you want to limit internet access, it must be done in such a way that the remote DOMjudge installation can

still be reached.

Team authentication: the IP-based authentication will still work as long as each team workstation has a

different public IP address. If some teams are behind a NAT-router and thus all present themselves to

DOMjudge with the same IP-address, another authentication scheme must be used (e.g. PHP sessions).

Judges: if the people reviewing the submissions will be located remotely as well, it’s important to agree

beforehand on who-does-what, using the submissions claim feature and how responding to incoming clarifi-

cation requests is handled. Having a shared chat/IM channel may help when unexpected issues arise.

Scoreboard: by default DOMjudge presents all teams in the same scoreboard. Per-site scoreboards can be

implemented either by using team categories or team affiliations in combination with the scoreboard filtering

option.

42

C DOMjudge and the ICPC validator

interface standard

DOMjudge supports the ICPC validator interface standard, which can be found at:

http://www.ecs.csus.edu/pc2/doc/valistandard.html

As short summary, this interface standard consists of two parts: the invocation and the result interface.

The invocation interface specifies that a validator must be called as a separate executable with at least four

command line parameters:

/path/to/validator <input_data> <program_output> <reference_output> \

<result_file> [<extra_options>...]

The result interface specifies that result_file should be a valid XML document containing a root element

<result outcome="string1"> string2 </result>

where string1 is the result reported to the judging system and a value "accepted" indicates a correct result.

The invocation code (judge/testcase_run.sh) adheres to the invocation interface. It passes as a 5th

optional parameter to the validator program the filename in which it expects a difference output between

the program and jury output (parameters 2 and 3 respectively).

Parsing of the result XML file (in the result interface) is done with the ‘xsltproc’ program, which is part of

the

GNOME libxslt package http://www.xmlsoft.org/XSLT/ . The exitcode of the validator program should be

zero, otherwise an internal error is generated.

DOMjudge currently has two validator scripts: judge/compare and judge/compare_wrapper. The first does

a compare with a plain diff, the second script calls an external program for checking (e.g. judge/check_float

for comparison of floating point results). When passed a 5th parameter, this is interpreted as a filename

to which these scripts will write a comparison of the program and jury output. Both scripts also generate

XML compliant output, which is written to the result file specified in parameter 4 and fully complies with

the validator standard.

43

http://www.ecs.csus.edu/pc2/doc/valistandard.html
http://www.xmlsoft.org/XSLT/

D Submitdaemon and the Dolstra

protocol

In the default situation, teams can submit their solutions either via browsing to the web interface, or by

using the command line submit client, which behind the scenes employs the same web interface to actually

make the submission. This setup suffices for many environments.

The Dolstra protocol is different in that it uses a submitdaemon running on the domserver. One advantage

is that submissions can be made before the IP address of the team is known. This authentication is fortified

by the following process. When a client connects, it does not send the submission file, but only a reference

to a randomised and not publicly visible file. This file is then copied from server side with the submit_copy

script. This makes it impossible for teams to spoof a submission for a different team: the server ‘calls back’

the team the submitter identified himself as and checks for existence of the advertised file. Because filenames

are randomised and invisible (within the $HOME/.domjudge directory by default), it is also impossible for

someone to guess another team’s filename and submit it for them.

The figure below is a graphical representation of the flow of a submission. Arrows with filled lines indicate

the flow of the submission file, while dot-dash lines indicate flow of metadata about the submission. Each

line where no protocol of data transfer is given, are just file system operations. Squares are programs and

rounded squares are storage locations.

webbrowser webserver

submit client

Filesystem

submitdaemon submit_db

TMPDIR

Database

Filesystem

~/.domjudge submit_copy

http(s)

scp

exec
dolstra

choice

http(s)choice

Team Jury

exec

Figure D.1: Submission flow diagram including Dolstra protocol.

To have DOMjudge configure the IP upon first submission in this way, set option STRICTIPCHECK to 0. In

that case, we start out without IP’s (and the web interface will not be accessible), but as soon as a team

connects with the command line submit client to the submitdaemon, they are authenticated by correctly

submitting a file and the IP is registered and everything works as normal.

The connect can happen during the test session, so during the real contest everything is fully available.

This is a secure way of authenticating teams, which requires no passwords or IP configuration, but teams

must submit via the command line submit client to the command line daemon before they can access their

teampage.

44

APPENDIX D. SUBMITDAEMON AND THE DOLSTRA PROTOCOL 45

D.1 Dolstra protocol requirements

If you want to use the Dolstra submit method (next to / instead of the HTTP functionality) you need to

satisfy the following requirements.

The submitdaemon needs to run at the domserver, and receive connections on a configurable TCP port,

default 9147.

Team accounts need to be accessible via SSH on the domserver (a SSH public key of the DOMjudge system

account should be installed on all team accounts to provide key-based access), and a shared filesystem (e.g.

NFS) is needed between the team computers and the domserver. Alternatively, another means of providing

access from the server can be configured, see the file submit/submit_copy.sh for more details.

To build the command line client under Windows, you need to have at least Windows XP and cygwin version

1.7 for support of the complete netdb.h headers.

E Developer information

This section contains instructions specifically for those wishing to modify the DOMjudge source. If you have

any questions about developing DOMjudge, or if you want to share your changes that may be useful to

others, please don’t hesitate to contact us through our development mailing list .

E.1 Maintainer mode installation

Besides the two modes of installation described in section 3.3 (Installation system), DOMjudge provides a

special maintainer mode installation. This method does an in-place installation within the source tree. This

allows one to immediately see effects when modifying code.

This method requires some special steps which can most easily be run via makefile rules as follows:

make maintainer-conf [CONFIGURE_FLAGS=<extra options for ./configure>]

make maintainer-install

Note that these targets have to be executed separately.

E.2 Bootstrapping from Git repository sources

The installation steps in this document assume that you are using a downloaded tarball from the DOMjudge

website. If you want to install from Git repository sources, because you want to use the bleeding edge code

or consider to send a patch to the developers, the configure/build system first has to be bootstrapped.

This requires additional software to be installed:

• The GNU autoconf/automake toolset

• Flex and bisonc++ for generating the parsing code of the optional checktestdata script.

• Linuxdoc, groff and Xfig/transfig to build the admin and judge documentation from SGML sources

and a LaTeX installation to generate the PDF admin, judge and default team manual.

On Debian(-based) systems, the following apt-get command should install the additionally required packages

(next to the 3.2 (standard set of packages)):

apt-get install autoconf automake flex bisonc++

When this software is present, bootstrapping can be done by running make dist, which creates the

configure script and generates documentation from SGML/LaTeX sources.

E.3 Makefile structure

The Makefiles in the source tree use a recursion mechanism to run make targets within the relevant sub-

directories. The recursion is handled by the REC_TARGETS and SUBDIRS variables and the recursion step is

executed in Makefile.global. Any target added to the REC_TARGETS list will be recursively called in all

46

APPENDIX E. DEVELOPER INFORMATION 47

directories in SUBDIRS. Moreover, a local variant of the target with -l appended is called after recursing into

the subdirectories, so recursion is depth-first.

The targets dist, clean, distclean, maintainer-clean are recursive by default, which means that these

call their local -l variants in all directories containing a Makefile. This allows for true depth-first traversal,

which is necessary to correctly run the *clean targets: otherwise e.g. paths.mk will be deleted before

subdirectory *clean targets are called that depend on information in it.

	DOMjudge overview
	Features
	Requirements
	Copyright and licencing
	Contact

	Contest planning
	Contest hardware
	Requirements

	Installation and configuration
	Quick installation
	Prerequisites
	Installation system
	Configuration
	Configuration of languages
	Configuration of special run and compare programs
	Alerting system
	Other configurable scripts
	Submission methods
	Database installation
	Web server configuration
	Logging & debugging
	Installation of a judgehost
	Building and installing the submit client
	(Re)generating documentation and the team manual
	Optional features
	Upgrading

	Setting up a contest
	Configure the contest data
	Contest milestones
	Team authentication
	Providing testdata
	Start the daemons
	Check that everything works
	Testing jury solutions

	Team Workstations
	Web interface
	Jury and Administrator view
	The scoreboard
	Balloons

	Security
	Considerations
	Internal security
	Root privileges
	File system privileges
	External security

	Common problems and their solutions
	Java compilers and the chroot
	The Java virtual machine (jvm) and memory limits
	Java class naming
	GCJ compiler warnings
	Error: `submit_copy.sh failed with exitcode XX'
	C#/mono support
	Memory limit errors in the web interface
	Compiler errors: `runguard: root privileges not dropped'

	Multi-site contests
	DOMjudge and the ICPC validator interface standard
	Submitdaemon and the Dolstra protocol
	Dolstra protocol requirements

	Developer information
	Maintainer mode installation
	Bootstrapping from Git repository sources
	Makefile structure

